In May of last year, during the 150th anniversary of the Massachusetts Institute of Technology, a symposium on "Brains, Minds and Machines" took place, where leading computer scientists, psychologists and neuroscientists gathered to discuss the past and future of artificial intelligence and its connection to the neurosciences.
The gathering was meant to inspire multidisciplinary enthusiasm for the revival of the scientific question from which the field of artificial intelligence originated: how does intelligence work? How does our brain give rise to our cognitive abilities, and could this ever be implemented in a machine?
Noam Chomsky, speaking in the symposium, wasn't so enthused. Chomsky critiqued the field of AI for adopting an approach reminiscent of behaviorism, except in more modern, computationally sophisticated form. Chomsky argued that the field's heavy use of statistical techniques to pick regularities in masses of data is unlikely to yield the explanatory insight that science ought to offer. For Chomsky, the "new AI" -- focused on using statistical learning techniques to better mine and predict data -- is unlikely to yield general principles about the nature of intelligent beings or about cognition.
This critique sparked an elaborate reply to Chomsky from Google's director of research and noted AI researcher, Peter Norvig, who defended the use of statistical models and argued that AI's new methods and definition of progress is not far off from what happens in the other sciences.
No comments:
Post a Comment